阿克曼公式

您所在的位置:网站首页 阿克曼模型 计算前轮转角 阿克曼公式

阿克曼公式

2023-06-26 09:35| 来源: 网络整理| 查看: 265

阿克曼公式 1. 阿克曼公式2. 举例

1. 阿克曼公式

设有如下系统 { x ˙ = A x + B u y = C x \begin{cases} \dot x = Ax + Bu \\ y = Cx \end{cases} {x˙=Ax+Buy=Cx​显然,通过矩阵A能够得到其特征多项式 φ A ( λ ) = λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 \varphi _A ( \lambda ) = \lambda ^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 φA​(λ)=λn+an−1​λn−1+⋯+a1​λ+a0​通过将控制量设为模态反馈控制(详见模态反馈控制一文) u = − K x u = - Kx u=−Kx系统演变为 x ˙ = ( A − B K ) x \dot x = \left( A - BK \right) x x˙=(A−BK)x假设期望系统的期望特征多项式为 φ w ( λ ) = λ n + γ n − 1 λ n − 1 + ⋯ + γ 1 λ + γ 0 \varphi _w ( \lambda ) = \lambda ^n + \gamma_{n-1} \lambda^{n-1} + \cdots + \gamma_1 \lambda + \gamma_0 φw​(λ)=λn+γn−1​λn−1+⋯+γ1​λ+γ0​那么有阿克曼公式 K = [ 0 0 ⋯ 0 1 ] ⋅ [ B A B ⋯ A n − 1 B ] − 1 ⋅ φ w ( A ) (1) K = \left[ \begin{matrix} 0 & 0 & \cdots & 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} B & AB & \cdots & A^{n-1} B \end{matrix} \right]^{-1} \cdot \varphi _w (A) \tag{1} K=[0​0​⋯​0​1​]⋅[B​AB​⋯​An−1B​]−1⋅φw​(A)(1)其中 φ w ( A ) = A n + γ n − 1 A n − 1 + ⋯ + γ 1 A + γ 0 I (2) \varphi _w (A) = A ^n + \gamma_{n-1} A^{n-1} + \cdots + \gamma_1 A + \gamma_0 I \tag{2} φw​(A)=An+γn−1​An−1+⋯+γ1​A+γ0​I(2)利用式(1)和(2),可以计算出模态反馈控制中所需的增益矩阵 K K K。

2. 举例

例:设系统的柯西形式为 A = [ 0 1 − 2 − 3 ] , B = [ 0 1 ] A = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right], \quad B = \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] A=[0−2​1−3​],B=[01​]试确定 K 1 , K 2 K_1, K_2 K1​,K2​,使得系统的期望特征多项式为 φ w ( s ) = s 2 + 4 s + 3 \varphi _w (s) = s^2 + 4s + 3 φw​(s)=s2+4s+3。

系统为2阶,即 n = 2 n=2 n=2,故可以先计算 A B AB AB与 A 2 A^2 A2: A B = [ 0 1 − 2 − 3 ] ⋅ [ 0 1 ] = [ 1 − 3 ] AB = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} 1 \\ -3 \end{matrix} \right] AB=[0−2​1−3​]⋅[01​]=[1−3​] A 2 = [ 0 1 − 2 − 3 ] ⋅ [ 0 1 − 2 − 3 ] = [ − 2 − 3 6 7 ] A^2 = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] = \left[ \begin{matrix} -2 & -3 \\ 6 & 7 \end{matrix} \right] A2=[0−2​1−3​]⋅[0−2​1−3​]=[−26​−37​]期望的多项式为 s 2 + 4 s + 3 s^2 + 4s + 3 s2+4s+3,可以得到 γ 0 = 3 , γ 1 = 4 \gamma_0 = 3, \gamma_1 = 4 γ0​=3,γ1​=4。则 φ w ( A ) = A 2 + γ 1 A + γ 0 I = [ − 2 − 3 6 7 ] + 4 [ 0 1 − 2 − 3 ] + 3 [ 1 0 0 1 ] = [ 1 1 − 2 − 2 ] \begin{aligned} \varphi _w (A) &= A ^2 + \gamma_1 A + \gamma_0 I \\ &= \left[ \begin{matrix} -2 & -3 \\ 6 & 7 \end{matrix} \right] + 4 \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] + 3 \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \\ &= \left[ \begin{matrix} 1 & 1 \\ -2 & -2 \end{matrix} \right] \end{aligned} φw​(A)​=A2+γ1​A+γ0​I=[−26​−37​]+4[0−2​1−3​]+3[10​01​]=[1−2​1−2​]​那么,根据式(1)有 K = [ 0 1 ] ⋅ [ B A B ] − 1 ⋅ φ w ( A ) = [ 0 1 ] ⋅ [ 0 1 1 − 3 ] − 1 ⋅ [ 1 1 − 2 − 2 ] = [ 1 1 ] \begin{aligned} K &= \left[ \begin{matrix} 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} B & AB \end{matrix} \right]^{-1} \cdot \varphi _w (A) \\ &= \left[ \begin{matrix} 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 & 1 \\ 1 & -3 \end{matrix} \right]^{-1} \cdot \left[ \begin{matrix} 1 & 1 \\ -2 & -2 \end{matrix} \right] \\ &= \left[ \begin{matrix} 1 & 1 \end{matrix} \right] \end{aligned} K​=[0​1​]⋅[B​AB​]−1⋅φw​(A)=[0​1​]⋅[01​1−3​]−1⋅[1−2​1−2​]=[1​1​]​即:负反馈通路中的矩阵 K K K为 K = [ 1 1 ] K = \left[ \begin{matrix} 1 & 1 \end{matrix} \right] K=[1​1​]相应的控制量为 u = − K x = − x 1 − x 2 u = -K x = -x_1 - x_2 u=−Kx=−x1​−x2​



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3